3594: 「CSP-S 2019」树的重心
内存限制:256 MB
时间限制:3.000 S
评测方式:文本比较
命题人:
提交:0
解决:0
题目描述
小简单正在学习离散数学,今天的内容是图论基础,在课上他做了如下两条笔记:
1. 一个大小为 $n$ 的树由 $n$ 个结点与 $n − 1$ 条无向边构成,且满足任意两个结点间**有且仅有**一条简单路径。在树中删去一个结点及与它关联的边,树将分裂为若干个子树;而在树中删去一条边(保留关联结点,下同),树将分裂为**恰好**两个子树。
2. 对于一个大小为 $n$ 的树与任意一个树中结点 $c$,称 $c$ 是该树的**重心**当且仅当在树中删去 $c$ 及与它关联的边后,分裂出的所有子树的大小均**不超过** $\lfloor \frac{n}{2} \rfloor$(其中 $\lfloor x \rfloor$ 是下取整函数)。对于包含至少一个结点的树,它的重心只可能有 $1$ 或 $2$ 个。
课后老师给出了一个大小为 $n$ 的树 $S$,树中结点从 $1 \sim n$ 编号。小简单的课后作业是求出 $S$ 单独删去每条边后,分裂出的两个子树的重心编号和之和。即:
$$
\sum_{(u,v)\in E}\left(\sum_{x\in c(S'_u)} x+\sum_{y\in c(S'_v)} y\right)
$$
上式中,$E$ 表示树 $S$ 的边集,$(u, v)$ 表示一条连接 $u$ 号点和 $v$ 号点的边。$S'_u$ 与 $S'_v$ 分别表示树 $S$ 删去边 $(u, v)$ 后,$u$ 号点与 $v$ 号点所在的被分裂出的子树,$c(S)$ 表示树 $S$ 重心的集合。
小简单觉得作业并不简单,只好向你求助,请你教教他。
输入
从文件 `centroid.in` 中读入数据。
**本题输入包含多组测试数据**。
第一行一个整数 $T$ 表示数据组数。
接下来依次给出每组输入数据,对于每组数据:
第一行一个整数 $n$ 表示树 $S$ 的大小。
接下来 $n − 1$ 行,每行两个以空格分隔的整数 $u_i, v_i$,表示树中的一条边 $(u_i, v_i)$。
输出
输出到文件 `centroid.out` 中。
共 $T$ 行,每行一个整数,第 $i$ 行的整数表示:第 $i$ 组数据给出的树单独删去每条边后,分裂出的两个子树的重心编号和之和。
样例输入 复制
2
5
1 2
2 3
2 4
3 5
7
1 2
1 3
1 4
3 5
3 6
6 7
样例输出 复制
32
56
提示
数据范围:| 测试点编号 | $n=$ | 特殊性质 | | :---------: | :------: | :------: | | $1\sim 2$ | $7$ | 无 | | $3\sim 5$ | $199$ | 无 | | $6\sim 8$ | $1999$ | 无 | | $9\sim 11$ | $49991$ | A | | $12\sim 15$ | $262143$ | B | | $16$ | $99995$ | 无 | | $17\sim 18$ | $199995$ | 无 | | $19\sim 20$ | $299995$ | 无 | 表中特殊性质一栏,两个变量的含义为存在一个 $1 \sim n$ 的排列 $p_i$($1 \le i \le n$),使得: - A:树的形态是一条链。即 $\forall 1 \le i < n$,存在一条边 $(p_i, p_{i+1})$。 - B:树的形态是一个完美二叉树。即 $\forall 1 \le i \le \frac{n-1}{2}$,存在两条边 $(p_i, p_{2i})$ 与 $(p_i, p_{2i+1})$。 对于所有测试点:$1 \le T \le 5 , 1 \le u_i, v_i \le n$。保证给出的图是一个树。