3500: 「一本通 6.5 练习 3」迷路
内存限制:512 MB
时间限制:1.000 S
评测方式:文本比较
命题人:
提交:0
解决:0
题目描述
**原题来自:SCOI 2009**
Windy 在有向图中迷路了。 该有向图有 $N$ 个节点,Windy 从节点 $0$ 出发,他必须恰好在 $T$ 时刻到达节点 $N-1$。
现在给出该有向图,你能告诉 Windy 总共有多少种不同的路径吗?
注意:Windy 不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
输入
第一行包含两个整数,$N,T$;
接下来有 $N$ 行,每行一个长度为 $N$ 的字符串。第 $i$ 行第 $j$ 列为 `0` 表示从节点 $i$ 到节点 $j$ 没有边,为 `1` 到 `9` 表示从节点 $i$ 到节点 $j$ 需要耗费的时间。
输出
包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以 $2009$ 的余数。
样例输入 复制
2 2
11
00
样例输出 复制
1
提示
输入样例2
5 30 12045 07105 47805 12024 12345
输出样例2
852
数据范围:对于 $30\%$ 的数据,满足 $2\le N\le 5,1\le T\le 30$; 对于 $100\%$ 的数据,满足 $2\le N\le 10,1\le T\le 10^9$。